Our website uses cookies to enhance and personalize your experience and to display advertisements (if any). Our website may also include third party cookies such as Google Adsense, Google Analytics, Youtube. By using the website, you consent to the use of cookies. We have updated our Privacy Policy. Please click the button to view our Privacy Policy.

Google-MTA collaboration leverages smartphone tech for subway improvements

https://patch.com/img/cdn20/users/22965231/20180628/072731/styles/raw/public/processed_images/maria_cormack_pitts_new_york_city_nyc_subway_train_a_mta_transportation_platform_2017_1-1530228403-6001.jpg

The New York City Metropolitan Transportation Authority (MTA) has partnered with Google for a groundbreaking pilot project designed to enhance the dependability of its outdated subway network. Utilizing Google’s smartphone technology, this initiative aims to detect and resolve track problems proactively to prevent service interruptions. Called “TrackInspect,” the program marks a major advancement in incorporating artificial intelligence and contemporary technology into public transportation.

The Metropolitan Transportation Authority (MTA) in New York City has teamed up with Google in an innovative pilot project aimed at improving the reliability of its aging subway system. By leveraging Google’s smartphone technology, the initiative seeks to identify and address track issues before they lead to service disruptions. Known as “TrackInspect,” the program represents a significant step forward in integrating artificial intelligence and modern technology into public transit.

The pilot project, which began in September 2024 and concluded in January 2025, involved installing Google Pixel smartphones on select subway cars. These devices were tasked with collecting audio and vibration data to detect potential track defects. The data was then analyzed using Google’s cloud-based AI systems, which flagged areas requiring closer inspection by MTA personnel.

“By identifying early signs of track wear and tear, we not only reduce maintenance costs but also minimize disruptions for riders,” said Demetrius Crichlow, president of New York City Transit, in a statement released in late February.

The MTA’s partnership with Google is part of a broader effort to modernize New York’s 120-year-old subway system, which continues to face challenges related to aging infrastructure and frequent delays. While the pilot program demonstrated promising results, questions remain about whether TrackInspect will be expanded given the financial constraints facing the MTA.

Subway delays continue to be a constant issue for those traveling in New York City. Towards the end of 2024, the MTA documented tens of thousands of delays monthly, with numbers surpassing 40,000 in just December. These interruptions stem from numerous causes, such as track flaws, construction activities, and shortages of crew members.

El programa TrackInspect se centra en abordar un aspecto crucial del problema: detectar y solucionar problemas mecánicos antes de que se agraven. Durante la prueba piloto, se instalaron seis teléfonos Google Pixel en cuatro vagones R46 del metro, reconocidos por sus asientos de color naranja y amarillo. Los dispositivos registraron 335 millones de lecturas de sensores, más de un millón de datos de GPS y 1,200 horas de audio.

The smartphones were strategically located both inside and beneath the subway cars. The external devices were fitted with microphones to record both sound and vibrations, whereas the internal phones had their microphones deactivated to ensure passenger conversations weren’t recorded. These internal devices focused exclusively on capturing vibrations to identify any irregularities in the tracks.

The smartphones were strategically placed both inside and underneath the subway cars. While the external devices were equipped with microphones to capture audio and vibrations, the internal phones had their microphones disabled to ensure passenger conversations were not recorded. Instead, these devices focused solely on vibrations to detect irregularities in the tracks.

La línea de tren A, seleccionada para el piloto, presentó un entorno de prueba variado con vías tanto subterráneas como elevadas. Además, incluyó segmentos de infraestructura recientemente construida, ofreciendo un punto de referencia para comparaciones. Aunque no todos los retrasos en la línea A se deben a problemas mecánicos, los datos recopilados durante el programa piloto podrían contribuir a resolver problemas recurrentes y mejorar el servicio en general.

Encouraging outcomes, yet challenges persist

The TrackInspect initiative produced promising results, as the AI system accurately identified 92% of defect locations that were confirmed by MTA inspectors. Sarno estimated his own accuracy rate in anticipating track defects from audio data to be approximately 80%.

The initiative also featured an AI-driven tool based on Google’s Gemini model, enabling inspectors to inquire about maintenance procedures and repair records. This conversational AI furnished inspectors with straightforward, actionable insights, which further streamlined the maintenance workflow.

The program also included an AI-powered tool based on Google’s Gemini model, which allowed inspectors to ask questions about maintenance protocols and repair history. This conversational AI provided inspectors with clear, actionable insights, further streamlining the maintenance process.

Google participated in the pilot as part of a proof-of-concept initiative that was provided at no expense to the MTA. However, broadening the program would probably demand substantial investment, making financing a key factor for those making decisions.

An increasing movement in transit advancements

La colaboración de Nueva York con Google forma parte de una tendencia más amplia en la que ciudades de todo el mundo están adoptando inteligencia artificial y tecnologías inteligentes para mejorar los sistemas de transporte público. Por ejemplo, New Jersey Transit ha utilizado IA para analizar el flujo de pasajeros y la gestión de multitudes, mientras que la Autoridad de Tránsito de Chicago ha implementado medidas de seguridad basadas en IA para detectar armas. En Pekín, se ha introducido la tecnología de reconocimiento facial como alternativa a los boletos de transporte tradicionales, disminuyendo los tiempos de espera en horas pico.

Google ya ha colaborado anteriormente con otras agencias de transporte. El gigante tecnológico ha creado herramientas para optimizar la programación de Amtrak y se ha aliado con proveedores de tecnología de estacionamiento para integrar datos de aparcamiento en la calle en Google Maps. No obstante, la envergadura y complejidad del sistema de metro de Nueva York hace que este proyecto sea especialmente ambicioso.

The MTA operates the largest subway network in the United States, offering 24-hour service on numerous lines. This continuous operation introduces additional complexity to maintenance tasks, as repairs and upgrades frequently have to be performed alongside active service. Employing AI and smartphone technology, the TrackInspect program might assist the MTA in tackling these challenges more effectively.

Looking forward

Although the TrackInspect pilot has concluded, the MTA is investigating collaborations with additional technology providers to further improve its maintenance procedures. The agency is also evaluating data from the pilot to assess its effects on minimizing delays and enhancing service. Initial signs indicate that specific types of delays, including those from braking problems and track defects, declined on the A line during the pilot. However, the MTA warns that more analysis is required to verify a direct connection to the program.

Por el momento, el piloto simboliza un paso esperanzador hacia la modernización de las operaciones de la MTA y la resolución de los desafíos de un sistema de tránsito envejecido. Al combinar el conocimiento de empresas tecnológicas como Google con la experiencia de los profesionales del transporte, la ciudad de Nueva York podría ofrecer una experiencia de metro más confiable para sus millones de pasajeros diarios.

For now, the pilot represents a promising step toward modernizing the MTA’s operations and addressing the challenges of an aging transit system. By combining the expertise of tech companies like Google with the experience of transit professionals, New York City may be able to deliver a more reliable subway experience for its millions of daily riders.

As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.

The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.

By Amelia Reed

All rights reserved.

  • From Disaster to Digital: The Atomfall Story

  • Japan’s Green Energy Transition: Cow Waste to Hydrogen

  • The hidden danger in your pantry: custard powder

  • Unexpected beginnings of Twitter’s innovators